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Abstract

High-density electrophysiology simultaneously captures the activity from hundreds of neurons,
but isolating single-unit activity still relies on slow and subjective manual curation. As datasets
keep increasing, this poses a major bottleneck in the field. We therefore developed UnitRefine,
a classification toolbox that automates curation by training various machine-learning models di-
rectly on human expert annotations. Fully integrated in the SpikeInterface ecosystem, UnitRefine
combines established and novel quality metrics, cascading classification and comprehensive hy-
perparameter search to provide optimized models for different applications. UnitRefine achieves
human-level performance across diverse datasets, spanning species, probe types, and laboratories,
including recordings from mice, rats, mole rats, primates, and human patients. Applied to a large
brain-wide dataset, UnitRefine doubled single unit yield and improved behavioral decoding per-
formance. A streamlined graphical interface allows models to be fine-tuned to new datasets and
shared via the Hugging Face Hub, enabling broad adoption and community-driven improvement
of automated curation workflows.

Introduction

Extracellular electrophysiology is a fundamental technique in neuroscience, enabling researchers to ex-
plore how individual neurons and neural populations encode and transmit information. Each recording
electrode can capture action potentials from multiple individual neurons, necessitating the isolation
and clustering of spiking activity through spike sorting. The goal of spike sorting is to first identify
signals in the recording that represent putative action potentials, and then cluster them into groups,
representing the activity of individual neurons (single-units)®.

Traditional spike sorting techniques rely on manual sorting and curation, yielding reliable results for
individual electrodes or low-density probes such as tetrodes?. However, with the increasing number
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of recording sites on modern devices®, automated spike sorting solutions have been developed to
improve the scalability and reliability of spike sorting while reducing the need for manual curation.
These developments are critical for high-density multi-electrode arrays (HDMEASs) with hundreds or
thousands of electrodes, where manual approaches are infeasible*. Large-scale datasets from recordings
of brain-wide neural activity during different behaviors are now also openly available, establishing
HDMEA recordings as a quasi-standard for many efforts to study neural circuit function®®°.

The significant volume of data generated by HDMEASs is a substantial challenge for scalable data
processing and analysis”®. Although automated spike sorters continuously improve, current algorithms
still cannot reliably isolate single-unit activity?'?. Different experimental settings also introduce var-
ious sources of variability that can strongly affect spike sorting performance. For example, combining
electrophysiology with optogenetic manipulation or functional imaging can introduce light-induced
artifacts that can occlude spiking activity''. Moreover, movement artifacts are common in acute
recordings and during behavior. This can limit the quality of single-unit isolation, and, in turn, affect
the subsequent interpretation of neural recordings.

A potential solution for automated spike sorting curation lies in using metrics that quantify the
quality of single-unit identification'?!3:14:15:16 " These metrics can be derived from features of action
potential waveforms, measures of cluster separation, or from biophysical properties of action potential
generation, such as refractory period (RP) violations. Manually setting thresholds on relevant metrics
can then be used to automatically exclude noise or poorly isolated units. However, in many cases the
distribution of the computed metric values varies depending on experimental conditions such as the
recording system, recorded brain areas or species'”. While this complicates identification of appropriate
thresholds, it has been shown that an appropriate selection of metrics generalizes well across brain areas
and recordings in mice from different labs'®. Recent work has attempted to automate the curation
progress'?2Y. However, existing approaches still require manual fine-tuning and expert knowledge to
adjust for variability across recordings, and are primarily focused on Neuropixels recordings.

To overcome these limitations and enable fully automated spike sorting curation, we developed
UnitRefine, a flexible open-source framework for the classification of spike clusters that is fully inte-
grated into the Python-based open source toolbox Spikelnterface!®. Users can train their own curation
models on labeled data, or use existing, pre-trained models. Using manually labeled data, we trained
and optimized classifiers based on a large set of quality metrics computed from the clustered units.
This approach yielded high classification accuracy in unseen recordings, comparable to the accuracy of
expert human curators. Moreover, UnitRefine generalizes very well across different experimental set-
tings, with high classification accuracy across various recording devices, including Neuropixels probes,
Utah arrays, or wire bundles, and different species, including mice, rats, mole rats, monkeys, and
humans. UnitRefine also outperformed current threshold-based approaches and improved the iden-
tification of task variables across brain regions, demonstrating its wide applicability and utility to
accelerate neuroscientific discovery.

Results

Evaluation of manually curated spike-sorting clusters

To assess the quality of existing spike-sorting approaches, we analyzed a large set of acute mouse
recordings obtained with Neuropixels 1.0 probes?!, targeting different cortical and subcortical struc-
tures (Figure 1A, left). The overall recording quality varied substantially across sessions, with dif-
ferences in baseline noise and spike visibility (Figure 1A, right). In some experiments, optogenetic
stimulation or functional imaging introduced light-induced artifacts that degraded signal quality.

The base dataset was comprised of 11 Neuropixels 1.0 recordings containing 5,121 clusters from
the primary visual cortex (V1), superior colliculus (SC), and anterior lateral motor cortex (ALM). A
subset of seven high-quality recordings (2,945 clusters), consisted of homogeneous low-noise V1 and
SC recordings and was used to develop and evaluate the classifier model (see below). Including four
additional optogenetic recordings in the base dataset increased experimental diversity and exposed
curators to a broader range of cluster types, further improving the robustness of the model between
datasets (Supplementary Figure S1).

For spike sorting, we first isolated active channels on the probe, removed common-mode noise across
channels using time-shifted median subtraction, applied a high-pass filter, and extracted putative single
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Figure 1: Multi-curator evaluation of different electrophysiological datasets. A) Left: Example brain
slice with placement of a Neuropixels (NPX) probe across multiple brain regions. Right: Example traces for
high- and low-quality recordings and optical artifacts. B) Example clusters for single-unit (SUA), multi-unit
(MUA), and noise clusters. Top row shows the spike waveforms of each cluster across 6 recording channels.
Middle row shows cross-correlogram of inter-spike intervals (ISIs) and bottom row shows the amplitude of all
detected spikes across the entire recording. C) Manual evaluation of spike sorted clusters shows the fraction of
noise clusters (%) across different recording types: 1) NPX of high or low quality and with additional functional
imaging or optogenetic stimulation (green). 2) NPX recordings from other laboratories (orange), and 3) silicon
probe and MEA recordings (purple). D) Labeling agreement across human curators for either separating noise
from neural and MUA from SUA clusters (n = 11 recordings). E) Distribution of cluster labels, showing
the fraction of noise, MUA, and SUA labels across all high-quality recordings (n = 7 recordings). Error bars
indicate median + 95% confidence intervals; individual recordings are shown as circles.

neurons with Kilosort 2.5%2. The resulting clusters were manually labeled by five experienced curators
using Phy!, following a standardized protocol that classified clusters as single-unit activity (SUA),
multi-unit activity (MUA), or noise (Figure 1B).

SUA clusters were identified using three criteria: 1) Consistent spike waveforms across the clus-
ter, with minimal variability and negligible interference from other waveform shapes. 2) A smooth
correlogram of inter-spike-intervals (ISIs) with a clear dip in the center. 3) Stable spike amplitudes
throughout the recording session with limited dispersion (Figure 1B, bottom row). MUA clusters
contained neural but overlapping waveforms with lower amplitude and less variation across recording
sites, and a larger number of RP violations due to contributions from multiple neurons. Noise clusters
were characterized by irregular waveforms, ISI correlograms lacking a visible RP, and inconsistent spike
amplitude distributions throughout the recordings.

Manual curation revealed a high fraction of noise clusters, particularly in low-quality or com-
bined optophysiological recordings (51.7-52.8% mean noise occurrence). However, even in high-quality
recordings, approximately 20% of all clusters were due to non-neural noise. This was also found in
Neuropixels data from other research groups (23.1-32.7% mean noise occurrence; Figure 1C, orange),
demonstrating that this issue is common across labs. Moreover, the proportion of noise clusters was
even larger for other recording methods, such as multi-channel silicone probes or in vitro multi-electrode
array (MEA) recordings (65.6-76.0% mean noise occurrence; Figure 1C, purple).

To assess the consistency of curator labels, we computed the cross-curator labeling agreement from
two to five expert curators that independently annotated each recording in the base dataset. Across all
recordings, we found high inter-curator reliability for noise and SUA (Agreementy, ;.. = 87.9% [77.9 —

Thttps://github.com/cortex-1lab/phy/
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89.9], Agreementgy, = 86.4% [84.5 — 91.0]; median [95% Cls]) (Figure 1D). Although manual curation
can show substantial variability across experts®®19, this shows that our human curators consistently
labeled clusters with high accuracy, providing an important basis to develop an automated curation
approach. The overall distribution of labels across high-quality recordings is shown in Figure 1E. All
annotated datasets are also publicly available?.

Novel cluster metrics for automated spike-sorting curation

After manually labeling the spike-sorted clusters, we evaluated how well different quantitative metrics
could predict human labels. We therefore used Spikelnterface to compute a wide range of cluster
metrics®, and split them into quality and template metrics. Quality metrics assess the spike sorting
reliability and contain various features of spike trains, spike amplitude, and overall cluster separa-
tion'®?4, Template metrics capture neural waveform properties that distinguish neural activity from
artifacts, such as the peak-to-valley duration or full-width half maximum®. A detailed description of
all metrics can be found in the appendix.

We also developed three new cluster metrics to address specific noise and SUA features and im-
plement them in Spikelnterface. Synchrony metrics quantify the simultaneous occurrence of spikes
across multiple clusters, leveraging spike synchronicity to identify noise due to electrical interference
or channel crosstalk?®. To account for this feature, we established two separate measures, quantifying
the number of simultaneous spikes occurring within at least two or four different clusters.

Amplitude variation metrics quantify the stability of spike amplitudes over time, which should
be high for well-isolated neurons. Amplitude variation is based on the ratio between the standard
deviation and the mean of spike amplitude, computed at various recording times, from which the
amplitude variation median and range are computed.

Lastly, firing range quantifies the firing rate dispersion over time. We first computed the firing
rate distribution within 10-s long recording periods and defined the firing range as the the difference
between the 5th and 95th percentile of the local firing rate distribution. Very high variations in firing
range are characteristic of noise clusters which tend to exhibit large dispersion at specific recording
times (Figure 1B, bottom right panel).

Discriminative power of individual cluster metrics

We next evaluated the capacity of individual metrics to predict cluster quality and whether they
provided complementary information. Pairwise correlations showed that metrics were only weakly
correlated with few expected exceptions, such as a high correlation between the geometric median spike
amplitude and signal-to-noise ratio (Figure 2A). Principal component analysis (PCA) also showed
that the explained variance gradually increased, with 22 components required to account for 90%
variance (Figure 2B). Different metrics therefore, carry complementary information, motivating their
combined use for cluster curation.

To assess the information content of individual metrics over human labels we used an area under
receiver operating characteristic (AUC) analysis?®. Almost all metrics yielded significant predictions
for noise classification (AUC significantly different from 0.5, Wilcoxon signed-rank test, p < 0.05)
with the half-width of the cluster waveform and the synchrony metrics being particularly informa-
tive (Figure 2C). Most metrics could also significantly discriminate between MUA and SUA clusters
(Figure 2D) with inter-spike-interval violations, L ratio, firing range and synchronicity being the most
informative.

Together, these results show that metrics are complementary and differentiate between noise, MUA,
and SUA, suggesting that combining a larger group of complementary metrics into a decoder framework
could yield high automated curation accuracy.

Development and evaluation of an automated curation approach

To develop a fully automated curation framework, we evaluated two classification strategies. In the
cascaded approach, clusters were first divided into noise and neural groups, followed by cluster sep-
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Figure 2: Discriminative power of neural quality metrics. A) Correlation matrix showing relationships
between all metrics. Red and blue indicate positive and negative correlations, respectively. B) Cumulative
explained variance from principal component analysis, showing that 22 components are required to explain 90%
of variance (dashed lines). C) AUC values for distinguishing noise from non-noise clusters, using established
template metrics (green), quality metrics (red), and new quality metrics (purple). AUCs near 1 or 0 indicate
strong predictive power; values near 0.5 indicate no relationship. Significance was assessed using bidirectional
Wilcoxon signed-rank tests (***p < 0.001, **p < 0.01, *p < 0.05). D) Same as in C), but for SUA classification.
Box plots show the median (central line), interquartile range (box), and 95% confidence intervals (whiskers).
Circles indicate individual recordings (n = 11). Metrics are ordered by descending median AUC.

aration into MUA and SUA. Alternatively, SUA clusters were classified directly against all non-SUA
clusters. Classifier hyperparameters were optimized using a Bayesian search procedure, and perfor-
mance was evaluated with leave-one-session-out 5-fold cross-validation. All reported accuracies are
therefore based on classification of completely unseen recordings.

Using all computed metrics from the high-quality base dataset, we found a consistently strong
performance for the separation into noise and neural clusters, and subsequently into SUA and MUA
(Figure 3A,B,D,E; Table 1, 2). Among the tested models, ensemble methods performed best, with RF
classifiers yielding the highest balanced accuracy (Accuracyygise = 83% [73.8 — 90.9], Accuracygy =
79.3% [70.7 — 85.6]; median [95% Cls]). To assess how performance scales with dataset size, we exam-
ined learning curves across classifiers (Figure 3C and 3F). Balanced accuracy increased rapidly with
training data and gradually plateaued after approximately 500 clusters. Thus, curated datasets from
one or two Neuropixels recordings could already be sufficient for robust decoder training, with further
data providing more gradual improvements.

We also tested curation with Bombcell (v1.7.2), a popular threshold-based method for cluster clas-
sification optimized for Neuropixels data?’. After manual optimization, Bombcell achieved a balanced
accuracy of 77.0 [69.2 — 86.1]% for noise and 72.6 [69.2 — 76.9]% for SUA detection.

Notably, SUA classification showed very high precision (few false positives) but lower recall (more
false negatives; Supplementary Figure S2). Similar results were observed when using a combination of
recommended metrics thresholds from the Allen Institute for Neural Dynamics® (Figure 3D). Together,
these results highlight an inherent trade-off: conservative thresholding reliably identifies SUA clusters
but excludes potentially useful clusters, whereas machine-learning classifiers emulate human curator
behavior to achieve higher sensitivity.

We also tested a classifier to directly isolate SUA from all other clusters, as commonly done in other
datasets?”. The RF model again achieved high performance, with 85% balanced accuracy across seven
recordings containing 836 SUA clusters (28.4%) (Figure 3G). Overall, model performance approached
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Figure 3: Comparison of machine learning classifiers for noise and SUA separation. A) Com-
parison of balanced accuracy across different classifiers for noise decoding. Ensemble methods consistently
outperformed linear models, neural networks, and the transformer-based TabPFN. B) Confusion matrix for
the RF model, showing an overall balanced accuracy of 83%, with equally low false positive and false negative
rates. C) Learning curves demonstrate how classifier performance scales with increasing training data for noise
classification. RF reached high accuracy with relatively few labeled clusters, stabilizing around 500 clusters.
D-F) Same as in A-C) for SUA classification. Ensemble methods again achieved the highest performance,
with RF showing rapid gains and stable accuracy across datasets. G) Left: Balanced accuracy of the Random
Forest classifier for distinguishing SUA from all other clusters. Right: Confusion matrix, showing low mis-
classification of cluster labels. H) SHAP-derived feature importance across leave-one-out validations for SUA
classification for the 10 most important metrics. Unit quality metrics (e.g., ISI violation ratio, L-ratio, RP
contamination) consistently contributed the most to model predictions. I) SHAP-based quantification of RF
predictions for SUA classification, visualized for 200 randomly sampled clusters from an example recording for
the 10 most important metrics. The decision plot (left) depicts the influence of features on individual model
predictions, while the summary plot (right) shows the overall importance and directionality of each feature
across the dataset.

the upper bound of inter-curator agreement for SUA labeling (median 86.4%, 95% CI: 84.5-91.0%;
Figure 1D), demonstrating its reliability for automated curation of unseen recordings.

To identify which features determine SUA classification, we applied cross-validated Shapley additive
explanations (SHAP?®) to the RF model, the most accurate classifier in our evaluation (Figure 3H,
Supplementary Figure S3). For each cluster, SHAP assigns one value per metric, indicating how
much that metric shifts the prediction toward SUA (positive values) or toward non-SUA (negative
values). ISI violations ratio was the most discriminative metric, followed by spike half width, and
RP contamination with highly consistent feature rankings across training subsets. The decision plot
for an example recording illustrates the contribution of each feature, with individual clusters shown
as trajectories toward their classification outcome (Figure 3I). SHAP values were typically bimodal,
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with large metric values consistently shifting predictions toward non-SUA classifications. These results
show that even with limited training data, the classifier leverages biologically meaningful metrics and
performs curation in a manner comparable to human experts.

UnitRefine generalizes across labs and brain regions

To assess cross-dataset generalization, we tested the pre-trained classifier from our lab on independent
recordings from multiple laboratories, targeting distinct cortical and subcortical brain regions.

We first evaluated our pre-trained model on forebrain recordings from the IBL dataset (8 sessions;
see Table 4)?9, achieving robust balanced accuracy of 79% (Figure 4A). SHAP-based feature attribution
also revealed largely consistent metrics across datasets, except median amplitude having a surprisingly
strong impact on model decisions (Figure 4B). Single-cluster SHAP values for median amplitude were
also predominantly negative, thus shifting the model toward non-SUA classifications (Figure 4C). This
suggests that cross-dataset differences in spike amplitude may have reduced curation performance.
Indeed, while the pre-trained model clearly outperformed threshold-based curation using the IBL
standard criteria®’, retraining the model directly on IBL data further improved performance, reaching a
very high balanced accuracy of 98% (Figure 4D, E). Although the pre-trained model readily generalized
to new recordings, retraining therefore further aligned it to dataset-specific recording conditions. After
retraining, ISI violation ratio, firing rate, and RP contamination emerged as the most informative
features (Figure 4F). Notably, the mean absolute SHAP value for ISI violation ratio increased from
0.060 in the pre-trained model to 0.150 after IBL retraining (Figure 4B, F), reflecting its heightened
contribution to classification accuracy. This shows that although key physiological features remain
consistent across datasets, their relative weights also adapt to lab-specific curation practices.

We next tested the model on Neuropixels 2.0 recordings from the Allen Institute for Neural Dy-
namics (4 sessions; see Table 4), which provide a denser electrode layout than Neuropixels 1.0 probes,
and observed consistent performance (Supplementary Fig. S4).

Here, the pre-trained model achieved high balanced accuracy of 86%, with a modest improvement
to 91% when retraining on Allen sessions, demonstrating robust cross-dataset generalization. To de-
termine whether a cross-laboratory training strategy further improves model generalization, we pooled
all available recordings (n = 23) and trained a unified RF model. Leave-one-session-out validation
revealed consistently high balanced accuracy across all datasets and labs (Figure 4H). This shows that
pooling data from different labs and recording modalities can improve model robustness and mitigate
lab-specific biases, thus reducing the need for retraining on individual datasets. All classifiers and the
foundational datasets are also available on Hugging Face®. Comparing SHAP feature rankings of the
unified model across datasets revealed that quality metrics, such as ISI violation ratio, RP contamina-
tion, and firing rate, were consistently among the most informative features (Figure 4K). In contrast,
waveform metrics, such as spike half-width, were more variable, suggesting that spike waveform prop-
erties are more dependent on recording-specific parameters, such as probe type or recording depth.
Lastly, we also evaluated curation performance across different brain regions in the IBL recordings,
including the frontal cortex, extended amygdala, hypothalamus, striatum, and thalamus. Region-wise
benchmarking showed high balanced accuracies (96-99%, Figure 4J), demonstrating robust general-
ization across distinct brain areas.

Evaluating metric subset importance for model generalization

Having established that UnitRefine achieves robust performance across multiple labs and brain regions,
we asked if the model maintains high accuracy with a reduced subset of core metrics. Given the diversity
of standards across electrophysiology systems, this is particularly important when using a generalized
model on recordings where some specialized metrics might not be available.

We therefore evaluated model performance across all datasets (n = 23 recordings, 10,833 clusters)
using four different groups of metrics that balanced physiological relevance, availability, and compu-
tational efficiency. Group 1 consisted of all metrics; Group 2 contained only quality metrics; Group 3
contained spike time-based metrics, such as ISI violations and spike synchrony, which are rapidly com-
puted from spike timestamps alone; and Group 4 contained only template metrics related to waveform
morphology (Table 3).

Shttps://huggingface.co/Anoushkalain3/UnitRefine-mice-sua-classifier
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Figure 4: Cross-laboratory and cross-region generalization of automated curation. A) Confusion
matrix showing 79% balanced accuracy for a pre-trained RF model, tested on IBL recordings. B) SHAP-derived
feature importance across leave-one-session-out validation for the pre-trained model, highlighting amplitude
median, ISI violation ratio, and RP contamination as important metrics. C) SHAP-based quantification of
pre-trained model predictions, visualized for 200 randomly sampled clusters. The decision plot (left) depicts
the influence of features on individual model predictions, while the summary plot (right) shows the overall
importance and directionality of each feature across the dataset. D) Leave-one-session-out validation, com-
paring balanced accuracy with thresholding, pre-trained, and IBL-trained models. E-G) Same as in A-C)
for an IBL-trained model. H) Balanced accuracy of the unified cross-lab model, using leave-one-session-out
validation across the base, IBL, and Allen datasets. I) Ranking of SHAP feature importance across labs,
highlighting both universally predictive quality metrics, such as ISI violations ratio, and lab-specific variations
in waveform metrics, such as spike half-width. J) Balanced accuracy across five major brain regions (cortex,
extended amygdala, hypothalamus, striatum, thalamus) for IBL data, showing robust generalization (>95%
accuracy) across 10 random seeds.

As expected, classification accuracy was highest when using all metrics (Figure 5A, Table 5). No-
tably, spike time-based metrics yielded nearly equivalent balanced accuracy at minimal computational
cost, making them particularly valuable for resource-limited settings. In contrast, quality metrics
produced slightly lower accuracy, and template metrics alone were least effective. Thus, spike time
metrics provide an efficient foundation for a generalized curation model that can be translated to any
recording system. We therefore used spike-time based models to test UnitRefine across species.
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Figure 5: Cross-species generalization of UnitRefine. A) Left: Leave-one-out balanced accuracy across
classifiers, trained on different metric groups. Right: Compute time for an example 25-minute Neuropixels
recording, split into feature extraction (blue) and cluster metric computation time (purple). B—D) Species-
specific leave-one-out balanced accuracy of different classifiers for mole rat (B), monkey (C), and human (D)
datasets. Boxplots show balanced accuracy across recordings; confusion matrices illustrate correspondence
between human and predicted labels. E) Leave-one-out balanced accuracy of a generalized classifier, applied
to datasets from different species. Despite some variability, the classifier achieved high median accuracy across
all species. F) SHAP-based ranking of feature importance across species. Universally informative metrics
include ISI violation ratio, RP contamination, and firing rate, while amplitude- and waveform-based features
vary across species.

We first examined cross-species generalization in mole rat recordings (4 sessions; see Table 4). The
mouse-trained model already achieved high balanced accuracy, suggesting effective transfer of spike-
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based metrics across species. Retraining a mole rat—specific model yielded similar performance, while
a mixed-species model, combining mouse and mole rat data, achieved the highest balanced accuracy
(Figure 5B).

Augmenting the existing rodent model with mole rat data, therefore, strengthened decoder relia-
bility, providing a valuable alternative to retraining from scratch. Moving beyond rodents, we applied
UnitRefine to nonhuman primate recordings (11 sessions). The mouse-trained model achieved moder-
ate curation accuracy, while retraining on monkey data substantially improved performance. Notably,
a mixed mouse—primate model achieved comparable accuracy while expanding training diversity (Fig-
ure 5C), indicating robust transferability across species and recording systems.

Finally, we applied UnitRefine to human intracranial recordings (12 sessions). The mouse-trained
model performed poorly, whereas retraining on human data strongly improved accuracy, with equally
high performance of a mixed mouse-human model (Figure5D).

Across all species, mixed models consistently performed comparably to species-specific decoders,
highlighting the benefit of combining annotated training datasets from different species. A unified
cross-species model also achieved high leave-one-session-out performance across all species, demonstrat-
ing that it captured core electrophysiological patterns that generalize beyond individual datasets and
species-specific biases (Figure 5E). These results underscore that UnitRefine can be flexibly extended to
unseen species, recording platforms, and experimental conditions with the unified cross-species model
providing a versatile starting point for diverse electrophysiological experiments.

SHAP-based feature importance ranking showed that firing rate was the most consistent metric
across species, while ISI violation ratio was among the most informative metric in all animal models. In
contrast, human data show a heavier reliance on synchrony-based metrics, potentially due to differences
in electrode geometry and noise structure. Together, these findings demonstrate that UnitRefine
maintains robust generalization across species, probe types, and spike-sorting pipelines, supporting its
use from basic to translational neuroscience applications.

UnitRefine improves cluster yield and population analysis sensitivity

To demonstrate the practical impact of UnitRefine, we applied it to the large-scale brain-wide IBL
dataset of 699 recordings from task-performing mice?”. In the original study, SUA clusters were identi-
fied by thresholding amplitude, RP violations, and amplitude symmetry, reducing the 621,733 clusters
to 75,708 (12.8%)3C. In contrast, UnitRefine identified 175,027 (28.1%) putative SUA clusters, which
substantially overlapped with threshold-selected clusters (87.9%) while greatly expanding the total
amount of available clusters (Figure 6A). Next, we compared population-level decoding performance
using UnitRefine- or threshold-selected clusters to predict animal choices and feedback outcomes across
brain regions. To ensure that the differences were due to the principled selection of informative units
rather than an increased sample size, we included a control condition containing all threshold-selected
clusters, plus a random subset of additional clusters to match the number of UnitRefine clusters.
While the control consistently underperformed in both groups, UnitRefine led to a modest but con-
sistent increase in the accuracy of the feedback prediction (Figure 6B). More importantly, UnitRefine
increased the fraction of subregions within each brain structure that were significantly predictive of
animal choice or feedback, indicating increased sensitivity to detect task-related signals in individual
brain areas (Figure 6C). The differences in task decoding between the two curation approaches were
broadly distributed in general and strongest in the frontal cortical and midbrain areas for choice and
the hindbrain areas for feedback (Figure 6D). Gains were particularly pronounced in smaller brain
areas, such as the orbitofrontal cortex or midbrain reticular nucleus (Figure 6E), suggesting that an
important advantage of UnitRefine curation lies in increasing the number of high-quality clusters when
the unit numbers are otherwise too low for robust population analyzes.

Cluster curation and active learning

To promote broad adoption, we developed a graphical user interface (GUI) with detailed online doc-
umentation” to navigate the UnitRefine workflow (Figure 6F, left). Users can load data from local
or cloud storage, train new models from curated labels, or apply existing UnitRefine models. In a

Shttps://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
"https://github.com/anoushkajain/UnitRefine

10


https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
https://github.com/anoushkajain/UnitRefine
https://doi.org/10.1101/2025.03.30.645770
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.30.645770; this version posted December 16, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A Total SUA clusters B Decoding scores C Significant subregions -
1 Thresholding
0.5 2 0.8 ' mm UnitRefine curation
A == Control
0.4 ° g el ﬁ MB
| 0 g | Isocortex
o S
E 03 _ g - £ 05 ! <4 ) $5
9144 66564 108463 £ 02 \ T N g 044 ‘ CNU
L N - ] ? . 5 03 OLF
\ - . CTXsp
0.1 \g BLi 1 5 0.2 ) ‘— HB
Thresholding J 1 = " | £ 01 o \\ HPF
00 L+ 1 8 00 a Ny —o HY
UnitRefine curation feedback choice feedback choice

D Regions layout UnitRefine Control UnitRefine

Feedback

Choice

3 3 i 1 T
-0.4 -0.3 0.2 -0.1 0.0 0.1 0.2 03 04 -020 -015 -0.10 -0.05 0.0 0.05 0.10 015 0.20

E R2difference from thresholding R2difference from thresholding

Feedback
sl WL DT 1 Eecey LN oo ppogpeznzezs
5 2.2 4A000 8 GBI g @Ol 2 2 2 SWESTEL

i P O L } BTS2

Active learning framework

Manual -
o H Train new model ’—D

F UnitRefine GUI

Push model/data
to hugging face
|

Identify uncertain units
(low prediction confidence)

v
Manually label
uncertain units

7
Update training set
with new labels

retrain

Spike sorter output

Active learning

Figure 6: Impact of automatic curation strategy on a large-scale dataset. A) Venn diagram of SUA
clusters in the IBL dataset, either based on metric thresholding or UnitRefine. B) Decoding performance
for feedback and choice across brain regions, computed as the null-corrected median balanced accuracy of a
logistic regression decoder. C) Fraction of subregions within each major brain structure that were significantly
predictive of animal choice or feedback. D) Left: Swanson flat maps of the whole brain with regions color-coded
by anatomical assignment. Additional information on brain regions is available online®. Right: Difference maps
for feedback and choice decoding with UnitRefine or control curation versus thresholding curation. Areas with
improved or decreased decoding performance are shown in red or blue, respectively. E) Same data as in D)
but with individual area labels. Font colors indicate membership to brain regions. F) UnitRefine-GUI (left)
illustrating the four main steps: data loading, cluster curation, model training or loading, and validation-based
model retraining. Cluster curation is done through the Spikelnterface-GUI (right). G) Active-learning—based
workflow for iterative model refinement. The existing model is applied to new data, uncertain and high-
confidence units are presented to the user, and user feedback is used to retrain and improve model performance.

11


https://doi.org/10.1101/2025.03.30.645770
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.30.645770; this version posted December 16, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

subsequent validation step, predicted labels can be examined, corrected and also be leveraged to re-
train customized models. Validation and curation is implemented through Spikeinterface-GUI, which
is used to visualize key cluster features and improve the curation quality. An integrated active learning
pipeline (Figure 6G) further enhances model customization by automatically highlighting clusters with
low prediction confidence for user review. These additional labels are incorporated into the training
set to iteratively improve model performance. Finally, trained models and datasets can be shared via
the HuggingFace Hub, facilitating collaboration and reproducibility across labs.

Discussion

Our results demonstrate that fully automated curation of spike sortings is feasible and achieves high
accuracy comparable to that of human experts. Using a supervised learning framework based on
established and novel quality metrics, UnitRefine accurately classifies neuronal units across diverse
datasets and experimental conditions, spanning different brain areas, recording systems, and species.
Designed as a flexible analysis pipeline, UnitRefine accommodates various preprocessing algorithms and
spike-sorting methods while maintaining high accuracy in identifying SUA clusters that are essential
for downstream analyses.

Automated curation addresses a critical bottleneck in current electrophysiology workflows: the ex-
tensive manual labor required to refine sorted clusters. By reducing or eliminating the need for expert
intervention, UnitRefine can save hundreds of hours in human effort per lab, allowing researchers to
focus on experimental interpretation rather than technical validation. In settings where manual cura-
tion remains desirable, UnitRefine labels can improve decision speed and consistency by highlighting
uncertain clusters for review. Moreover, its active learning framework enables rapid re-training or
creation of new models for custom applications. Combining predictions with traditional thresholding
rules can also be used to enhance sensitivity. Such hybrid approaches may be particularly effective
for large or noisy datasets, as well as for emerging applications like closed-loop BMI systems where
real-time spike sorting is essential3’.

A key strength of UnitRefine lies in its integration with Spikelnterface!'®, which standardizes metric
computation, streamlines and simplifies the construction of analysis pipelines, and facilitates the reuse
and sharing of trained models. In addition, we provide a standalone implementation for expert users to
incorporate UnitRefine into custom workflows, allowing flexible integration of additional cluster metrics
for specialized applications, such as automatic identification of neurons with specific tuning properties.
The conceptual direction of this work aligns closely with ongoing efforts to modularize spike-sorting
pipelines within the Spikelnterface framework. Traditional sorters are typically implemented as mono-
lithic packages with multiple algorithmic stages, such as filtering, spike detection, feature extraction,
and clustering’1932, However, performance often varies substantially across stages. A modular de-
sign allows individual components to be interchanged, promoting both flexibility and transparency in
pipeline optimization. UnitRefine offers a principled way to benchmark each stage by evaluating how
changes in preprocessing, peak detection or clustering methods affect the final curation quality. In
the absence of real ground truth, predicted labels can serve as a proxy to identify the most reliable
pipeline configurations for a given dataset. This could also be beneficial for future features, such as
automatic cluster splitting or merging, that may be required for fully automated curation procedures.

With the growing availability of large standardized datasets, for example from the IBL'® and the
Allen Institute for Brain Science®, including diverse datasets from individual laboratories will further
enable researchers to evaluate how well spike-sorting methods generalize across different experimental
conditions and assess their robustness to variations in recording setups and preprocessing strategies.
While generalization across regions and species was overall robust, we found lower accuracy in some
hindbrain and cerebellar regions (Figure 6D), likely because they were not contained in the training
data. Especially for regions where spike waveforms are strongly shaped by anatomy, for example
Purkinje cells or climbing fibers in the cerebellum?®3, region-specific models may therefore provide
more accurate classification.

A major obstacle in developing novel SUA classification algorithms is also the absence of ground-
truth datasets?. A notable exception is SpikeForest®*, which combines real ground-truth datasets and
simulated data to enable systematic benchmarking of spike sorters. Such standardized datasets are
essential for reproducibility and meaningful comparison across different stages of the spike sorting
process. To contribute to these efforts, all spiking data, cluster metrics, and human labels that we
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used in the study are therefore available in an online repository?°.

The UnitRefine models trained on the base dataset used 37 distinct metrics per cluster. However,
many of these metrics are computationally expensive because they depend on features that require
scanning the entire raw recording, such as individual spike amplitudes and PCA analyses. Moreover,
some metrics are specific to HDMEAs, limiting the transferability of models trained with them to
other recording types. Fortunately, our model comparison showed that spike-time-based metrics alone
can achieve very high curation accuracy across many recording types, making them ideally-suited for
generalized models that can be employed to virtually any electrophysiological experiment (Figure 5).
Both species-specific and generalized models are provided within the UnitRefine workflow to serve as
a starting point for automated curation of new datasets. Spike-time metrics can also be computed
directly from different spike-sorter outputs without requiring access to raw data, further broadening
the applicability of the approach. In addition, only around 500 curated clusters were needed to train a
robust decoder, suggesting that smaller laboratories can readily adapt UnitRefine by testing existing
models, verifying predicted labels, and curating a limited number of clusters to further refine model
accuracy. Iteratively improving the initial automated curation in this way quickly increases the number
of available training clusters and enhances overall performance.

Retraining becomes particularly important when recording conditions differ substantially from the
training data. For example, the base model performed poorly on human intracranial recordings, likely
due to differences in the noise structure, electrode geometry or the used spike-sorter, but substantially
improved after retraining. When applying UnitRefine to a new species or recording type that was not
included in the training data, augmenting an existing generalized model with limited species-specific
labels is therefore likely to yield the highest classification accuracy. Importantly, UnitRefine is also
not limited to specific cluster labels and users may apply it to other settings, such as the automated
classification of neuron subtypes® or somatic versus axonal activity?’. Threshold-based tools such as
Bombcell can also provide complementary value by identifying dataset-specific criteria, and their labels
can be directly used to train or refine UnitRefine models. We therefore believe that UnitRefine can
be a highly valuable tool across a wide range of experimental settings that include electrophysiological
recordings, promoting standardization while reducing manual labor.

Finally, developing UnitRefine as an open-source Python package ensures accessibility, trans-
parency, and community growth. Its integration with Spikelnterface enables precise version control,
reproducible benchmarking, and straightforward troubleshooting, which are essential for methodologi-
cal rigor. By lowering technical barriers to automated spike curation, UnitRefine offers a reproducible,
efficient, and user-friendly solution for modern electrophysiological analysis. We anticipate that its
combination of performance, openness, and extensibility will promote widespread adoption, acceler-
ating progress toward standardized, automated, and interpretable neural data processing across the
neuroscience community.

Methods

Neural Recording Acquisition and Preprocessing

For Neuropixels 1.0 recordings in the base dataset, probes were stereotactically positioned in V1 and
the midbrain through a thin silicone window using standard procedures?!. In experiments involving
optogenetic stimulation, light delivery was synchronized with the electrophysiological recording to
monitor potential artifactual responses. Further surgical details for these recordings are also provided
in Balla et al.?".

Raw electrophysiological data were preprocessed using temporal phase shifting, identification and
removal of bad recording channels, bandpass filtering (300-6000 Hz), and common-mode referencing®.
Transient artifacts were identified and removed with CatGT?. Spike detection and sorting were then
performed with Kilosort 2.5%% using default parameters.

Neural recordings from different labs were acquired using multiple electrode and recording systems,
including Neuropixels 1.0 and Neuropixels 2.0, and other silicon probe and MEA configurations. Data
was collected from diverse experimental preparations across multiple species, including mole rats,
monkeys, and humans. The preprocessing and spike-sorting methods were largely similar for the

8https://spikeinterface.readthedocs.io/en/stable/modules/preprocessing.html
9nttps://github.com/billkarsh/CatGT
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different Neuropixels recordings, except for the use of Kilosort 4 instead of 2.5 for spike sorting. For
human recordings, the spike-sorter Combinato was used to account for noisy recording conditions in
the clinic?®. Aside from inter-species differences, these different recording and analysis conditions may
have contributed to the need for re-training to achieve high classification performance in human data.

Manual Curation

Human annotations for the base dataset were generated using a standardized manual curation proce-
dure. The spike sorting results were curated in Phy 2.0b1'° by experienced curators. To ensure that
curation performance was as high as possible, all curators went through repeated rounds of training and
evaluated their labeling results together to ensure that classification criteria were applied consistently.
Units were classified into four categories: (1) single-unit activity (SUA), representing well-isolated indi-
vidual neurons; (2) multi-unit activity (MUA), representing activity from multiple neurons; (3) noise,
representing non-neural artifacts (electrical, optical, or other non-biological signals); and (4) putative
units, where curators were not sufficiently confident of the cluster label, for example a low-quality
MUA cluster that could also be labeled as noise. To ensure clear cluster labels in the training dataset,
these putative units were excluded from the initial model training.

FEach dataset in the base collection was curated by at least two trained curators. Clusters labeled
as putative units by the majority of curators were excluded. Agreement rates between curators were
calculated separately for noise and SUA classifications, providing an upper bound on the expected
classifier performance in subsequent analyses.

Quality metric calculation and redundancy

We computed a comprehensive set of unit-level quality metrics to enable the automated cluster classi-
fication. These metrics were grouped into three categories: (1) standard quality metrics, (2) template-
based metrics, and (3) newly introduced metrics. All metrics were calculated using SpikeInterface
(version 102.0) in accordance with the official tutorial'!. New quality metrics were all integrated in
spike interface so that all metrics that were used in the study can be readily computed for new datasets.
Detailed definitions and computation methods for each metric are provided in the appendix.

Before model training and evaluation, all feature values were converted to a 32-bit floating-point
format, infinite values were replaced with NaN, and extreme outliers were clipped to the range [~
1 x 105, 1 x 10°] to ensure numerical stability. Log normalization was applied to spike-related features
(including firing rate, SNR, and amplitude metrics) to correct for their highly skewed distributions,
typical of electrophysiological data. This preprocessing pipeline was consistently applied to both
training and test datasets to preserve data integrity and comparability across experimental conditions.

We examined redundancy among cluster metrics and evaluated their ability to distinguish noise,
multi-unit activity (MUA), and single-unit activity (SUA) clusters. To quantify pairwise relationships
between metrics, we computed the Pearson correlation matrix across all curated clusters in the base
dataset (Figure 2A). Metrics were grouped into three categories: template metrics (green), quality
metrics (red), and newly introduced metrics (blue). Hierarchical clustering was then applied within
each category to identify groups of highly correlated metrics, which appear as distinct clusters in the
correlation matrix.

To examine redundancy and shared variance among cluster metrics, we performed principal com-
ponent analysis (PCA) on the full set of metrics and plotted the cumulative explained variance of
the resulting principal components (Figure 2B). Prior to PCA, missing values were imputed using
median substitution. All features were then standardized using the StandardScaler () function from
scikit-learn to ensure equal contribution of all metrics with different scales (e.g., firing rate versus
amplitude-based measures). The dimensionality was then determined by computing the lowest num-
ber of components required to retain 90% of the total variance, corresponding to 22 components in
our dataset.

Ohttps://github.com/kwikteam/phy
https://spikeinterface.readthedocs.io/en/latest/modules/qualitymetrics.html
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AUC analysis for metric performance evaluation

The performance of individual quality metrics and machine learning classifiers was evaluated using the
area under the receiver operating characteristic curve (AUC). For each metric and classifier, we cal-
culated the AUC for two classification tasks: (1) distinguishing noise from non-noise (neural signals),
and (2) identifying single-unit activity (SUA) from other signal types. For individual metrics, AUC
values were computed by varying the decision threshold across the full range of the metric and calcu-
lating the sensitivity and specificity at each threshold. Metrics were then ranked by their median AUC
values to identify the most discriminative individual features for each classification task. The AUC
ranges from 0 to 1, with both 0 and 1 indicating perfect classification (for the opposing class, respec-
tively) and 0.5 indicating random guessing. For each experimental recording from the base dataset,
cluster-level quality metrics and ground truth annotations were processed independently to preserve
dataset-specific distributions. Feature-level AUC-ROC scores were computed using the roc_curve ()
and auc() functions from scikit-learn. Each feature was treated as an independent classifier by using
its raw values as prediction scores against the corresponding ground truth labels. To assess whether
AUC-ROC distributions differed from chance, we used bidirectional Wilcoxon signed-rank tests for
each metric.

Machine Learning Methodology in UnitRefine

UnitRefine consists of a comprehensive supervised machine learning framework for automated spike
sorting curation. The framework consists of two complementary components: model training and
model deployment, organized around two core modules:

Training pipeline (train-manual_curation.py): enables researchers to train new custom models
on their own manually curated datasets.

Model based curation pipeline (model based _curation.py): provides application of pretrained
models to new spike sorting outputs.

Both modules can be used programmatically in Python or through the UnitRefine GUI. UnitRefine
runs within the Spikelnterface ecosystem, and no additional software packages are required beyond
the Spikelnterface and its standard dependencies.

Training Pipeline: The pipeline develops custom models through the CurationModelTrainer class,
automating all major steps of model development. The trainer accepts expert-curated human labels
and spike sorting quality metrics, and then selects data preprocessing, model selection methodology,
and performance evaluation. Users can specify the set of features (metrics) to include, define pre-
processing options such as missing-value imputation, feature scaling, select among multiple machine
learning algorithms, and apply optional data balancing for imbalanced datasets (which is often the
case for SUA classification). Hyperparameter optimization is handled automatically using Bayesian
search methods. To accommodate different experimental workflows, UnitRefine supports two flexible
data input modes:

1) Analyzer-based training integrates directly with SortingAnalyzer objects in Spikelnterface to
compute and extract cluster metrics and ensure parameter consistency across recordings. This is ideal
for using UnitRefine as an automatic curation step as part of a spike-sorting pipeline in Spikelnterface.

2) File-Based Training allows the training and application of models based on pre-computed quality
metrics and labels that are provided in comma-separated value (.csv) files. This allows flexible integra-
tion of UnitRefine in custom workflows that do not require Spikelnterface but aim to use UnitRefine
as a stand-alone curation tool.

For classification, UnitRefine supports a diverse ensemble of algorithms, including tree-based en-
sembles (Random Forest, AdaBoost, Gradient Boosting), advanced gradient boosting frameworks (XG-
Boost, LightGBM, CatBoost), and linear or neural baselines (SVC, Logistic Regression, MLP). All
classifiers can be initialized with fixed random seeds to ensure reproducibility.
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Model hyperparameters are tuned using an automated search framework. The primary optimization
strategy employs Bayesian optimization to efficiently explore the parameter space, with randomized
search available as a fallback for broad compatibility across algorithms. All model optimization relied
on five-fold stratified cross-validation. Balanced accuracy was used as the evaluation metric to mitigate
class imbalance. We report 95% confidence intervals derived from the empirical distribution of balanced
accuracy across cross-validation folds, using the 2.5th and 97.5th percentile boundaries.

The example below shows how to train a UnitRefine model using the default Random Forest classi-
fier on a labeled dataset. The same interface can be used with either Spikelnterface SortingAnalyzers
or pre-computed csv files. Depending on the mode, either the analyzers variable for the object or
the metrics_path variable for the .csv file need to also be specified.

import spikeinterface.curation as sc

trainer = sc.train_model(

mode = "analyzers", # Use either ’analyzers’ or ’CSV’
labels = [labels], # Numpy array with human curated labels
analyzers = [analyzer] # Analyzer object for ’analyzers’ mode
metrics_paths = ["path/to/file.csv"] # File path for ’CSV’ mode
folder = "my_folder", # Output directory for model and metadata
metric_names = None, # Optional: specify metrics to include
imputation_strategies = ["median"], # Imputation strategy
scaling_techniques = ["standard_scaler"], # Feature scaling method
classifiers = ["RandomForest", "SVC"], # Default classifier (others optional)

#

search_kwargs = {’cv’: 5} Cross-validation settings

This command runs the complete UnitRefine training pipeline, including data preprocessing, cross-
validation, and model selection. The best-performing classifier and its configuration are automatically
saved to the specified folder in two files: model.skops and model_info.json. The skops file uses a
secure serialization format for scikit-learn models, preserving all training and preprocessing parame-
ters (e.g., imputation, scaling, feature order, fitted model). The accompanying model_info. json file
records the features used during training, label mappings, class names, and software dependencies to
ensure full reproducibility.

The trained UnitRefine models can be shared on the Hugging Face Hub for community reuse and
benchmarking. Each uploaded model includes model.skops and model_info. json files. An additional
metadata. json file records essential biological and acquisition information (e.g., species, brain areas,
probe type) to guide appropriate reuse. The metadata fields are formatted to align with the Neurodata
Without Borders (NWB) conventions®’. A metadata example for a mole rat recording is organized as
follows:

model_metadata = {
"subject_species": ["Mus musculus"],
"brain_areas": ["V1"],
"probes": [{
"manufacturer": "IMEC",
"name": "Neuropixels 2.0"

3]

Once the metadata file is created, the entire model directory (my_folder) can be uploaded directly
to the Hugging Face Hub, enabling model sharing, comparison, and reuse across laboratories. A typical
model folder has the following structure:

my_folder/

| -- best_model.skops (best-performing model)

| -- metadata.json (biological and acquisition metadata)

| -- model_info.json (training configuration and feature used)
| -— model_accuracies.csv (performance summary)

16


https://doi.org/10.1101/2025.03.30.645770
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.30.645770; this version posted December 16, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

|-- labels.csv (training labels used for the model)
|-- training_data.csv (data used during training)

Model-based curation pipeline: This module allows users to apply a pretrained machine learning
model to curate their own spike-sorted data. When a trained model directory (my_folder) is uploaded
to the Hugging Face Hub, its contents form the pretrained model package used by the model-based
curation pipeline. Within this package, best_model. skops is the file that UnitRefine loads to generate
predictions on new spike-sorted data.

The ModelBasedClassification class is designed with the following capabilities: 1) Flexible model
loading: supports loading models either from a local directory or directly from the Hugging Face Hub.
2) Parameter and feature validation: ensures that all required metrics are available, feature names
match, and preprocessing parameters are consistent with those used during training. 3) Confidence
reporting: outputs predicted labels along with calibrated probabilities for each cluster to support
downstream quality control.

The example below shows how to retrieve a public model from Hugging Face Hub and apply it to
a SortingAnalyzer object. The output is a pandas dataframe with the predicted labels. The same
functions also accept a local folder path instead of repo_id.

# Download a pretrained model (or load from a local folder).
model, model_info = sc.load_model(
repo_id = "SpikeInterface/UnitRefine_sua_mua_classifier",
trusted = ["numpy.dtype"] # whitelist for secure deserialization

# Predict labels for units in a SortingAnalyzer.

labels = sc.auto_label_units(
sorting_analyzer = sorting_analyzer,
repo_id = "SpikeInterface/UnitRefine_sua_mua_classifier",
trusted = ["numpy.dtype"]

Example output schema (pandas DataFrame) for each cluster:
prediction probability

sua 0.94
sua 0.92
mua 0.89

To obtain an estimate of the computation time for each classifier with different metric sets, we an-
alyzed a 25-minute-long NeuroPixels 1.0 recording with 384 channels and 242 units. The preprocessed
recording was then saved locally before computing all the required extensions. The computation was
done on an 8-core workstation with an Intel i-7 CPU and 32 GB of RAM.

SHAP-Based Model Interpretation

To interpret how individual quality metrics influenced classification decisions, we applied SHapley Ad-
ditive exPlanations (SHAP) analysis. SHAP decomposes each model prediction into additive contribu-
tions from all input features, indicating how much each metric increases or decreases the probability of
an individual cluster being classified as SUA and providing a consistent and interpretable visualization
of the decision process.

For each dataset and cross-validation fold, SHAP feature importances (Figure 4B, F) were com-
puted using the TreeExplainer algorithm, which is specifically optimized for tree-based models such
as Random Forest decoders. The SHAP feature importance workflow comprised three main steps:

1) During model training, Random Forest classifiers were trained for each random seed (n = 10) on pre-
processed data. 2) After training, the Random Forest estimator was extracted from the scikit-learn
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pipeline, and SHAP values were computed for the test set of each fold, focusing on the positive SUA
class. 3) Lastly, feature importance was quantified as the mean absolute SHAP value across all test
samples within a fold, providing a measure of the average contribution of each feature to the model’s
predictions.

Feature importance was visualized as sorted bar plots displaying mean absolute SHAP values, with
error bars representing the standard deviation across random seeds. For cross-species and cross-dataset
comparisons (Figure 4K and Figure 5F), SHAP-based feature rankings were visualized as heatmaps,
highlighting differences in feature importance across species (mouse, mole rat, monkey, human) and
datasets. Lower rank values corresponded to higher importance (i.e. the first feature being the most
important), facilitating direct comparison across experimental contexts.

To further investigate model predictions, complementary SHAP summary and decision plots were
used to examine how variations in individual feature values affected the model’s output probabili-
ties. Summary plots provide an overview of feature importance distributions across all clusters, while
decision plots show the cumulative feature contributions along individual prediction paths, therefore
visualizing model decisions at both the population and single-unit levels.

Decoding of behavior in a decision-making task

We reproduced the methodology by using the dataset and code described in the IBL brain-wide-map
analysis® to decode two task variables: feedback outcome and choice. To compute decoder accuracy,
we used validated maximum-likelihood regression with L1 regularization. Cross-validation used a null
distribution to test for significance. To aggregate neurons from the same region but multiple recordings,
we combined P values using Fisher’s combined probability test.

We performed three decoding runs with the setup above. First we reproduced the results from the
main paper using cluster metric thresholds to select the units. Second, we used the Unit-Refine model
trained on data acquired under the same task?®. In the third and last run, to control for the effect
of the number of units, we selected all of the threshold units from the original paper, and randomly
selected units from the remaining pool until we reached the same unit count that Unit-Refine yielded.

GUI and Active learning

To facilitate accessibility for experimental laboratories and non-programmatic users, we developed a
graphical user interface (GUI) for UnitRefine using the PyQt5 framework. The GUI provides a guided
workflow for model training and automated curation, organized into four main steps (Figure 6F).

In the first step, users create a project directory. In the second step they load spike-sorting outputs
as a SortingAnalyzer object. Multiple analyzer objects can be imported simultaneously from either
local storage or cloud sources. Selecting an uploaded analyzer opens the integrated Spikelnterface-
GUI visualization backend, which displays waveforms, spike amplitudes, correlograms, and firing rates.
Users can then add or correct labels using hotkeys, and assigned labels appear in the quality column
(Supplementary Figure S5).

The third step provides an interface for training new models or loading existing UnitRefine models
from disk or directly from the Hugging Face Hub. The training menu (Supplementary Figure S6)
shows all configurable components, including metric selection, classifiers, scalers, imputers, and test-
size parameters. Predicted labels are displayed for validation through Spikeinterface-GUI and users
can provide additional labels.

The final step introduces an integrated active learning workflow (Figure 6G), implemented using
the modAL library*!'. After an initial model is trained, clusters with low prediction confidence are
automatically identified and presented to the user for targeted relabeling. These updated labels are
incorporated into the training set, enabling iterative retraining and progressive improvement of model
performance. Completed model folders can be uploaded to the Hugging Face Hub for distribution and
reuse across laboratories.
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Appendix: Quality Metric Descriptions

We exclusively used the implementations of quality and template metrics contained in the Spikelnter-
face package'® for model training. These are re-implementations of metrics from a diverse range of
papers and from GitHub repositories. We have tried to cite the first appearance of each metric in the
literature, though this is difficult for very commonly used metrics.

The firing range, amplitude_cv_median, amplitude_cv_range, and sync_n metrics are newly
developed metrics that we integrated into Spikelnterface. Below, we provide an overview of the metric
definitions using unified notation. All metrics listed here were computed for each cluster and used in
the full decoder models.

Terminology, conventions and notation

Cluster: Set of spikes, determined by a spike sorting algorithm to be clustered together.

Waveform: The preprocessed voltage trace of a spike. Can exist on many probe channels.

Template: The representative waveform of a single cluster, usually computed as the mean or median
of the cluster’s spike waveforms.

We index spikes with lower case letters, and clusters with upper case letters.

T : total time of the recording (s)
f : sampling frequeny (H z)

N : number of spikes

Ny : number of spikes in cluster I.

Spike train metrics

num_spikes
Number of spikes in the cluster.

firing rate
Average number of spikes in the cluster, per second.

firing range

For each cluster, the spike train is binned in time and a firing rate is computed for each time bin. This
produces a distribution of firing rates. The firing range is the difference between the 5th and 95th
percentile firing rates across the recording.

presence_ratio
For each cluster, the spike train is binned in time. The presence ratio is equal to the fraction of bins
containing at least one spike.

sync.n
Take all spike times from cluster I. Count all spikes which occur at the same timepoint (sample) as
at least n — 1 spikes from all other clusters. sync.n is equal to this count.

Refractory period violation metrics

Additional notation

T, : refractory period (s).

Once a neuron has fired an action potential, it cannot do so again for a duration known as the re-
fractory period. If two spiking events occur within this time interval, a refractory period violation has
occurred. The length of the refractory period is different in different neuron types, but usually lasts
for a few milliseconds.

isi_violations_count
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The number of inter-spike-interval (isi) violations that occured for each cluster. Here, the number of

violated refractory periods are counted. Hence if two spikes violate one period, only one violation is

counted (in contrast with rp_violations).

isi_violations_ratio'®

Given the isi_violations_count, the isi_violations_ratio approximates the contamination rate

of the cluster, assuming random contamination. For a cluster I, the approximation is given by
o . . isi_violations_count T
isi_violations.ratio = X (1)

N} 2T —1/f)

rp_violations

The number of refractory period (rp) violations that occur for each cluster. Here the total number of
violations is counted. Hence if two spikes violate another spikes’ refractory period, two violations are
counted (in contrast with isi_violations).

rp,contamination42

Given the rp_violations count, the contamination rate of the cluster is approximated, assuming
random contamination. The approximation is a refinement of isi_violations_ratio and works better
for highly contaminated clusters. For a given cluster I, the ratio is given by

rp_violations T

2
N T, ®

rp_contamination =1 — \/1 —

sliding rp violation®’

Assume that a percentage of the cluster’s spikes come from contamination. Compute the likelihood of
observing the computed isi_violations for a given refractory period, assuming Poisson spiking. Do
this for several putative refractory periods. If the confidence is above a 90% confidence threshold, keep
this refractory period. The sliding rp_violation is equal to the minimum contamination rate from
all kept refractory periods. Allows a metric to be computed for neurons with an unknown refractory

period.

Amplitude metrics

Additional notation

spike amplitudes: Using either max, min or max_abs as the extremal function, find the channel whose
cluster template has the maximal extremal value. Call this the extremal channel. For each spike, the
spike amplitude is equal to the extremal amplitude on the extremal channel.

amplitude cv: Consider the distribution of spike amplitudes for some subset of spikes. The amplitude
coefficient of variation (cv) is equal to the standard deviation of this distribution, divided by the mean.

sor
The snr is equal to the extremal amplitude of the template on the extremal channel, divided by the
standard deviation of the noise on this channel.

sd_ratio®?

Compute the spike amplitudes for a simulated cluster composed of many snippets of noise, giving a
noise-amplitude distribution. The sd_ratio is equal to the standard deviation of the cluster’s ampli-
tude distribution divided by the standard deviation of the noise-amplitude distribution.

amplitude_cv_median
For each cluster, time bin the spike amplitudes and compute the amplitude_cv for each bin. The

amplitude_cv_median is the median of the values across all bins in a given recording.

amplitude_cv_range
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For each cluster, time bin the spike amplitudes and compute the amplitude_cv for each bin. Find the
5% and 95" percentile values. The amplitude_cv_range is the difference between these values.

amplitude median
The median of the distribution of the spike amplitudes for each cluster.

a.mplitude,cutoff5

For each cluster, make a histogram of spike amplitude values. Assume the distribution is normally
distributed and fit the distribution using the high-value tail. Under this assumption, estimate how
many spikes are missing from the low-value tail. The amplitude_cutoff is equal to the estimated
fraction of spikes missing from the tail.

Drift metrics

Additional notation

Spike location difference distribution: for each cluster, compute the location of each spike, giving a
distribution of spike locations relative to the probe. Then compute the difference between the locations
and the median location. This gives a distribution of spike location differences for each cluster.

drift_ptp
The difference between the maximum and minimum values in the spike location difference distribution.

drift_std
The standard deviation of the spike location difference distribution.

drift_mad®
The median absolute deviation of the spike location difference distribution. More precisely,

drift mad = median (abs (spike_location_difference — mean (spike_location_difference))) .

Principal Components metrics

For these metrics, the principal components of each spike waveform are computed. When distance
is used, this refers to the distance measured by a metric, most commonly the L, metric, in principal
component space. The Mahalanobis distance accounts for cluster means and variations.
isolation_distance**

Compute the the Mahalanobis distance between cluster I and all other clusters. The isolation_distance
for cluster I is equal to the minimum of all these distances.

silhouette®’

Take a cluster 1. For every spike i € I, compute the average distance to every other spike from its own
cluster and call this a(¢). Call the other clusters By, Ba,.... Now compute the average distance from
i to every spike in each of these clusters and call these distances by (i), b2(i),.... Take the shortest of
these distances, b(i) = miny by(i). The sillhoutte score of this spike is equal to

 max(b(i) — a(i))
) = S ((a(0), 00 )

The cluster silhouette score of the cluster, silhouette, is the average of s(i) across all spikes.
nn_hit_rate®
For each spike in a cluster A, find n nearest neighbour spikes. The spike hit rate is the fraction of

these spikes which are also in A. The cluster spike rate is the mean of all spike hit rates for spikes in A.

nn miss_rate®
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For each spike not in a cluster A, find the n nearest neighbour spikes. The spike miss rate is the fraction
of these spikes which are in A. The cluster spike rate is the mean of all spike hit rates for spikes not in A.
d,prime15

Consider the spikes in one cluster A, and the set of all other spikes, = A. Construct a one-component
Linear Discrimiation Model with respect to these sets, which contains a mean and standard deviation
for each set of spikes pa, pt~a,04,0-4. The d_prime is equal to the normalised difference in these
means:

HA — H-A

T (4)

d_prime =
2(0% +024)

1.ratio?f

Assume all principal components for each cluster come from indepdendent, normal distributions. This
gives a probability x? distribution in PCA space. Consider all spikes that do not belong to cluster I,
sj. Using the Mahalanobis distance in PCA space between the spike s; and the cluster centroid Cj,
we can compute the probability that the spike s; should have been sorted into I. It is given by

P(s;,Cr) =1~ CDF (D? ) (5)
The 1_ratio for a cluster I is then equal to

1 ratio = ZP(Sj, Cr). (6)

J

Template metrics

The template metrics are mostly derived from Siegle et al.”.

Additional notation

A template is defined on a number of channels. The template on each channel has a peak (the
maximum value) and a valley (the minimum value). We call the channel with the extremal value
(either with respect to max, min or abs_max) the extremal channel. Many metrics (peak_to_valley,
get_peak_trough ratio, half_width, repolarization_slope, recovery_slope, num_positive_peaks,
num negative_peaks) only use the template from the extremal channel. We show a visual representa-
tion of several of these metrics in Figure 7.

peak 1

relaxation_slope

repolarisation
_slope

trough/2 -

trough

: :
half_width

Figure 7: A visual representation of some of the template metrics.

peak_to_valley (s)
The time between the peak and valley of the template on the extremal channel.

peak_trough_ratio

The ratio when dividing the peak by the trough (22 ).

trough

num_positive_peaks
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The number of positive peaks of the template on the extremal channel.

num_negative_peaks
The number of negative peaks of the template on the extremal channel.

half_width (s)
Consider the trough. The half_width is equal to the maximum interval around the valley index where
all template values lie between the trough value and half of the trough value.

repolarization_slope (uV/s)
Consider the line from the trough to the first zero-value following the trough. The repolarization_slope
is the gradient of this line.

recovery_slope (uV/s)
Consider the line from the peak to the first zero-value following the peak. The recovery_slope is the
gradient of this line.

exp_decay (1/um)

On every channel, find both the maximum amplitude and the distance from the extremal channel. Use
this to produce amplitude as a function of distance A(d). Fit this function to an exponential decay
A(d) =~ Agexp(—ad). The metric exp_decay is equal to the decay rate a.

velocity_above

On every channel above the extremal channel, find the time index of the extremal value of the template
and the distance from the extremal channel. Using this, produce distance as a function of extremal-
amplitude-temporal-location, d(¢). Fit this relation using a linear regression. The gradient represents
the velocity of the spike, which equals velocity_above.

velocity_below

On every channel below the extremal channel, find the time index of the extremal value of the template
and the distance from the extremal channel. Using this, produce distance as a function of extremal-
amplitude-temporal-location, d(¢). Fit this relation using a linear regression. The gradient represents
the velocity of the spike, which equals velocity_below.

spread

Find all channels containing a channel-template whose amplitude is above a given threshold. The
spread is equal to the maximum distance between the channels that pass this threshold.
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Supplementary Tables

Classifier Median (%) | Mean (%) | 95% Confidence interval
RandomForest (RF) 84.2 83.0 73.8 - 90.9
LGBMClassifier (LGBM) | 82.8 80.5 68.0 — 89.3
GradientBoosting (GB) 84.3 79.7 65.7 — 90.0
XGBClassifier (XGB) 82.7 78.4 66.1 — 89.8
AdaBoost (Ada) 79.4 78.0 67.4 - 90.3
TabPFN 80.3 77.8 65.5 - 90.1
Bombcell 78.0 77.4 64.7 — 89.9
LogisticRegression (LR) | 77.7 74.0 64.8 - 80.4
MLP 72.6 72.5 64.2 — 84.0

Table 1: Results from different classification algorithms for decoding noise versus neural clusters.

Classifier Median (%) | Mean (%) | 95% Confidence interval
RandomForest (RF) 79.6 79.3 70.7 — 85.6
XGBClassifier (XGB) 78.3 79.0 73.5 - 84.3
AdaBoost (Ada) 81.4 78.8 68.9 — 84.4
TabPFN 77.6 78.6 68.3 — 85.7
GradientBoosting (GB) 81.2 78.5 70.2 — 84.2
LGBMClassifier (LGBM) | 75.6 77.9 70.7 — 84.8
LogisticRegression (LR) | 74.7 76.7 67.0 - 84.9
MLP 74.6 74.3 65.5 — 81.3
Bombcell 72.9 72.6 69.2 - 76.9
Thresholding 68.6 69.8 61.2 - 79.5

Table 2: Results from different classification algorithms for decoding MUA versus SUA clusters.

Metric List Features

All Metrics num_spikes, firing_rate, presence_ratio, snr, isi_violations_ratio,
isi_violations_count, rp_contamination, rp_violations, sliding_rp_violation, am-
plitude_cutoff, amplitude_median, amplitude_cv_median, amplitude_cv_range,
sync_spike 2, sync_spike 4, sync_spike 8, firing range, drift_ptp, drift_std,
drift_mad, isolation_distance, l.ratio, d_prime, silhouette, nn_hit_rate,
nn_miss_rate, peak_to_valley, peak_trough ratio, half width, repolariza-
tion_slope, recovery_slope, num_positive_peaks, num_negative_peaks, veloc-
ity_above, velocity_below, exp_decay, spread

Quality Metrics num_spikes, firing_rate, presence_ratio, snr, isi_violations_ratio,
isi_violations_count, rp_contamination, rp_violations, sliding_rp_violation, am-
plitude_cutoff, amplitude_median, amplitude_cv_median, amplitude_cv_range,
sync_spike 2, sync_spike 4, sync_spike 8, firing range, drift_ptp, drift_std,
drift_mad, isolation_distance, Il.ratio, d_prime, silhouette, nn_hit_rate,
nn_miss_rate

Template Metrics peak_to_valley, peak_trough ratio, half width, repolarization_slope, recov-
ery_slope, num_positive_peaks, num_negative_peaks, velocity_above, veloc-
ity_below, exp_decay, spread

Spike Times Metrics | num_spikes, firing_rate, presence_ratio, snr, isi_violations_ratio,
isi_violations_count, rp_contamination, rp_violations, sliding rp_violation,
sync_spike_2, sync_spike_4, sync_spike_8, firing_range

Table 3: Overview of the different metric groups that were included in the reduced classifiers. A detailed
description of all cluster metrics is given in section .
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Dataset Probe type n recordings Spike sorter Species
Base dataset Neuropixels 1.0 11 Kilosort 2.5 Mouse
IBL Neuropixels 1.0 8 IBL-sorter (PyKS2.5)  Mouse
Allen Institute for Neural Dynamics Neuropixels 2.0 4 Kilosort 4 Mouse
Mole rat recordings Neuropixels 2.0 4 Kilosort 4 Mole rat
Nonhuman primate recordings Utah array 11 Kilosort 4 Macaque
Human intracranial recordings Behnke—Fried electrodes 12 Combinato®’ Human

Table 4: Overview of datasets used in this study. All model performance was evaluated using a leave-one-
session-out validation method.

Metric group | Median (%) | Mean (%) | 95% Confidence interval |
All metrics 85.0 84.8 67.5 —-97.3
Spike times metrics | 85.2 82.4 68.3 — 92.8
Quality metrics 83.8 85.1 69.5 — 98.1
Template metrics 68.0 68.5 53.1 — 83.9

Table 5: Median, mean, and 95% confidence interval of balanced accuracy performance across all tested
recordings for different metric groups.

Strategy | Median (%) | 95% Confidence interval
Pre-trained base model 79.4 77.2 - 829
Mole-rat only model 79.1 73.8-92.4
Merged model (base 4+ mole rat data) | 88.8 85.0 — 95.7

Table 6: Median and 95% confidence interval for different training strategies for curation of mole-rat data.

Strategy | Median (%) | 95% Confidence interval
Pre-trained base model 73.7 56.2 — 96.7
Monkey only model 93.1 76.9 — 99.0
Merged model (base + monkey data) | 91.7 86.0 — 99.8

Table 7: Median and 95% confidence interval for different training strategies for curation of monkey data.

Strategy | Median (%) | 95% Confidence interval
Pre-trained base model 39.6 23.8 - 54.2
Human only model 77.5 68.4 — 87.9
Merged model (base + human data) | 74.2 69.8 — 89.0

Table 8: Median and 95% confidence interval for different training strategies for curation of human data.
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Supplementary Figures
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Figure S1: Performance comparison between high-quality and base dataset models. Balanced
accuracy scores are shown for two models, either trained on the high-quality or the full base dataset on n = 8
IBL recordings. The base-traine model achieved slightly higher average performance (u = 0.776) compared to
the high-quality-trained model (¢ = 0.753). The moderate effect size (Cohen’s d = 0.62) indicates a consistent
improvement when incorporating a broader diversity of training data.
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Figure S2: Performance of Bombcell classifier. (A) Confusion matrix showing the performance of the noise

vs. neural classifier, achieving a balanced accuracy of 77%. (B) Confusion matrix showing the performance of
the MUA vs. SUA classifier, achieving a balanced accuracy of 75%.
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Figure S3: SHAP-based interpretation of UnitRefine classifier decisions. (A) Mean SHAP feature
importance values with standard deviation across ten cross-validation folds, showing the relative contribution
of each quality metric to model predictions. Same das as in Figure 3H but using all available cluster metrics.
Most metrics made signfiicant contributions to decoder performance. (B) SHAP decision and summary plots
illustrating how all features influence the model output for individual clusters.

28


https://doi.org/10.1101/2025.03.30.645770
http://creativecommons.org/licenses/by-nc/4.0/

available under aCC-BY-NC 4.0 International license.

A

C

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.30.645770; this version posted December 16, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

trained on base data trained on Allen data
tested on Allen data tested on Allen data 1.0
balanced accuracy = 79% balanced accuracy = 91% > 09 %
@
< = [©]
T 2 B 5 3 08 & ]
a @ o ¥ o
© < R =
e 2 e 2 B 07
@ g < g 0
= £ k5
s = S 06
%) 7]
0.5
Non SUA SUA Non SUA  SUA
Predicted label Predicted label \&QQ 4&6 4(@6
N N
éoo &{D &{D
«‘Q‘@ Q‘?I' \@ .
N

Figure S4: Cross-dataset evaluation of UnitRefine models trained on the base dataset and re-
trained on the Allen dataset. (A) Confusion matrix showing the performance of the model trained on
the base dataset, achieving a balanced accuracy of 79%. (B) Confusion matrix showing the performance of
the model retrained on the Allen dataset, achieving a higher balanced accuracy of 91%. (C) Comparison of
balanced accuracy across different approaches: a threshold-based curation method, the pre-trained model (base
dataset), and the retrained model (Allen dataset). The retrained model on the Allen dataset outperforms both
the pre-trained and threshold-based approaches, demonstrating improved generalization.
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Figure S5: UnitRefine curation interface. Cluster inspection is performed through the Spikelnterface-GUI
backend, which displays waveforms, amplitudes, correlograms, and firing rates. Users can manually add or
refine labels using hotkeys, with assigned labels shown in the quality column.
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UMNITREFINE: Train your model - O X
Information =
Here, you can train many models based on the labelled data.

Using the following analyzers: _J
Which metrics? |Rll available *

List of Classifiers: ['RandomForestClassifier']

Possible coptions: "RandomForestClassifier”, "AdaBoostClassifier', 'GradientBoostingClassifier", "SWC',
'LogisticRegression', 'EGBClassifier', 'CatBoostClassifier', 'LEBHMClassifier', 'MLPClassifier'.

List of Scalars: ['standard scaler']

Possible gptions: 'standard scaler’, 'min max scaler’, 'robust scaler®

List of Imputers: ["knn"]

Possible options: "median', '"most frequent', 'knn', "iteratiwve"

Test size: 0.2

Model name: model 1

Train models

Generate code to train a model

Figure S6: Training a model with the UnitRefine GUI. The interface allows users to select metrics,
classifiers, scalers, and imputers, specify training parameters, and train new models from curated labels. It
also supports automatic code generation for reproducible model training.
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